

Designed to ensure higher energy yield and lower costs for sites with challenging terrain, using SolarEdge's DC optimization and flexible design capabilities.

I The Flexibility to Optimize Anywhere

Ideal for community solar, small-medium scale utility and Agri-PV installations, the SolarEdge 330kW Inverter and H1300 Power Optimizer feature a unique virtual central topology with single DC input architecture and module-level Maximum Power Point Tracking (MPPT).

More Power

Combat complicated challenges posed by shading and uneven terrain through DC optimization on all modules and MPPT.

Increased Uptime

Reduce plant issues and maximize uptime with an unmatched system visibility through module-level monitoring.

Up to 50% BoS Savings*

Cut time, labor, and equipment with fewer and longer strings of up to 80 modules and a centralized topology.

Unmatched Flexibility

Adapt to any landscape or terrain and increase bifacial gains through distributed MPPTs. Presents more opportunities for sites that qualify for IRA tax incentives.

Empowering Community Solar Projects

- / Outperform on uneven ground suited for brownfield and irregular terrain sites
- I Reduce expenses associated with site grading and permits required for commercial site development
- / Overcome module mismatch and shading losses through DC optimization

About SolarEdge

SolarEdge is a global leader in smart energy, delivering innovative commercial and residential solutions that power our lives and drive future progress. Leveraging world-class engineering and worldwide experience, SolarEdge developed a ground-breaking intelligent inverter solution that changed the way power is harvested and managed in photovoltaic (PV) systems. Over 50% of Fortune 100 companies have SolarEdge technology on their rooftops and the company (SEDG) is traded on Nasdaq and listed on the S&P 500.

^{*} Based on comparisons using HelioScope on 8MW projects and typical string inverters. Numbers can change based on project characteristics