Obliczanie i aktywacja wskaźnika wydajności na Platformie Monitoringu – Nota aplikacyjna

Historia wersji

- ≠ Wersja 3.0, grudzień 2023 r.: aktualizacja treści i obrazów
- 📕 Wersja 2.1, kwiecień 2018 r.: korekta wzorów
- Wersja 2.0, grudzień 2017 r.: dodanie usługi satelitarnej do obliczeń wskaźnika wydajności

Spis treści

Omówienie	. 1
Konfiguracja wyświetlania PR na Platformie Monitoringu	. 3
Czujniki jako źródło danych	. 3
Satelitarny PR jako źródło danych	. 5
Wyświetl PR	.7
Załącznik A: Obliczanie PR	.7
Załącznik B: Sprawdzanie i aktualizacja zgodności oprogramowania	. 8

Omówienie

Niniejsza nota aplikacyjna opisuje sposób edycji ustawień na Platformie Monitoringu SolarEdge w celu wyświetlenia wartości wskaźnika wydajności (PR). Wartość PR jest krytycznym wskaźnikiem stosowanym do oceny efektywności i ogólnej wydajności systemu fotowoltaicznego (PV). Obrazuje poziom skuteczności systemu pod względem zdolności do przekształcania światła słonecznego w energię elektryczną. Wskaźnik wyrażany jest w procentach, a do jego obliczenia porównuje się rzeczywistą moc wyjściową systemu fotowoltaicznego z teoretyczną mocą wyjściową wytwarzaną w idealnych warunkach. Poniższa tabela przedstawia terminologię dotyczącą obliczania wartości PR:

Terminologia	Opis
Produkcja energii	Rzeczywista ilość energii elektrycznej wytwarzanej przez system fotowoltaiczny, mierzona w kilowatogodzinach (kWh).
Szczytowa wartość	Maksymalna moc znamionowa systemu fotowoltaicznego w
mocy	standardowych warunkach testowych, mierzona w kilowatach (kW).
Natężenie	llość energii słonecznej trafiającej na powierzchnię modułów
promieniowania	słonecznych w przeliczeniu na jednostkę powierzchni, mierzona w
słonecznego	kilowatach na metr kwadratowy (kW/m ²).

solar<mark>edge</mark>

Wartość PR obrazuje stratę wynikającą ze spadku efektywności systemu, na przykład na skutek zmian temperatury, zacienienia, nagromadzenia pyłu, zabrudzeń itd. Poniższa tabela opisuje pomiary wymagane do obliczenia wartości PR:

Pomiary	Opis
Uzysk energii	Tę wartość można zmierzyć za pomocą licznika energii monitorującego ilość energii elektrycznej wytwarzanej przez system fotowoltaiczny. Inteligentne falowniki SolarEdge dostarczają dane na temat produkcji energii.
Szczytowa wartość mocy	Szczytowa wartość mocy systemu fotowoltaicznego podawana jest przez producenta i można ją znaleźć na karcie danych lub na tabliczce znamionowej modułów fotowoltaicznych.
Natężenie promieniowania słonecznego	Dane dotyczące natężenia promieniowania słonecznego można uzyskać z lokalnych stacji pogodowych, czujników i systemów monitorowania słońca. Dane można również uzyskać od internetowych dostawców informacji pogodowych wykorzystujących obrazy satelitarne, którzy dostarczają dane bieżące i historyczne oraz potrafią prognozować dane dotyczące promieniowania słonecznego dla konkretnej lokalizacji.
Interpretacja obliczeń	Wyższy PR wskazuje na lepszą wydajność i efektywność systemu fotowoltaicznego. Wartość PR bliska 100% oznacza, że system działa wydajnie, natomiast niższa wartość PR oznacza stratę wydajności z różnych względów.

Należy pamiętać, że PR jest wskaźnikiem dynamicznym i może zmieniać się w czasie ze względu na warunki środowiskowe, zabiegi konserwacyjne i aktualizacje systemu. Regularne monitorowanie i obliczanie wartości PR może pomóc w identyfikowaniu problemów z wydajnością i prowadzeniu prac konserwacyjnych w celu optymalizacji wydajności systemu fotowoltaicznego.

Usługa satelitarna, która zapewnia obliczenia PR na podstawie informacji o natężeniu promieniowania z satelitów, jest dostępna tylko w niektórych regionach i można ją nabyć niezależnie od tego, czy czujniki są zainstalowane w danym miejscu, czy nie.

UWAGA

SolarEdge nie prowadzi już sprzedaży usług satelitarnych.

UWAGA

Informacje na temat podłączania czujników do bramy komercyjnej (CCG) i sposobu konfiguracji systemu można znaleźć w artykule <u>Instrukcja instalacji bramy sterująco-komunikacyjnej SolarEdge</u>.

Konfiguracja wyświetlania PR na Platformie Monitoringu

Aby skonfigurować obliczenia PR na Platformie Monitoringu:

- 1. Zaloguj się do Platformy Monitoringu.
- 2. Aby uzyskać dostęp do swojej instalacji, kliknij nazwę instalacji.
- 3. Kliknij ikonę Administratora.
- 4. W menu Administrator kliknij opcję Wydajność.

••• UWAGA

Jeśli zainstalowany jest czujnik lub wykupiono satelitarną usługę PR, wskaźnik wydajności wyświetli się na ekranie.

5. Wybierz Wskaźnik wydajności.

Czujniki jako źródło danych

Po zainstalowaniu czujników, podłączeniu ich do CCG i przeprowadzeniu konfiguracji można edytować ich ustawienia na Platformie Monitoringu, aby wyświetlać wartość PR na pulpicie instalacji. Aby włączyć czujniki, należy posiadać CCG z oprogramowaniem sprzętowym w wersji 2.07XX lub nowszej. Aby uzyskać informacje na temat zgodności oprogramowania i aktualizacji, zobacz Załącznik B: Sprawdzanie i aktualizacja zgodności oprogramowania.

Aby skonfigurować PR za pomocą czujników:

- 1. Z listy rozwijanej Źródło danych wybierz opcję Czujniki w miejscu instalacji. Wyświetlane są informacje o czujnikach lokalnych:
- Szczytowa wartość mocy prądu stałego w instalacji: pozyskana z danych instalacji
- Powiązana moc szczytowa: moc układu, w którym zainstalowane są czujniki

••• UWAGA

Liczba ta posłuży do obliczenia wartości PR i zostanie wyświetlona po edycji ustawień czujnika. W przypadku instalacji o wielu orientacjach powiązana moc szczytowa jest sumą mocy wszystkich systemów, w których zainstalowano czujniki.

Mazwa bramki (CCG) i informacje o czujniku.

solar<mark>edge</mark>

2. Aby włączyć obliczenia PR na podstawie odczytów z czujnika, zaznacz pole wyboru **Bramka**.

Wyświetlą się ustawienia czujnika, które można ponownie skonfigurować.

Site Details	~			
Site Access	~	Performance Ratio		
Logical Layout		Data Source	~	
Remote Settings	~			
Energy Manager		Site Peak Power: 443.8 kWp Associated Peak Power: 421.8 kWp		
Revenue		🔽 Gateway 1		
Performance	^	Irradiance Sensor Direct irradiance	~	
Inverter kWh/kWp		Associated Peak Power (i)		
Estimated Energy		421.8	kWp ∽	
Performance Ratio		Temperature Coefficient (i)	%	
		Cancel Save		

- 3. W polu **Czujnik natężenia promieniowania** sprawdź, czy konfiguracja czujnika natężenia promieniowania odpowiada ustawieniom skonfigurowanym w bramce.
- 4. W polu **Powiązana moc szczytowa** wprowadź wartość powiązanej mocy szczytowej i wybierz jednostkę (Wp, kWp lub MWp).

Wartość ta będzie teraz wyświetlana w polu Powiązana moc szczytowa.

• • •	UWA
	-

UWAGA Suma wartości powiązanej mocy szczytowej poszczególnych bram powinna być równa wartości mocy szczytowej instalacji.

5. Jeśli na miejscu zainstalowano czujnik temperatury modułu i chcesz, aby obliczenia PR uwzględniały jego odczyty, wprowadź współczynnik temperatury mocy modułu (%P/°C) w polu "Współczynnik temperatury".

UWAGA

Wartość współczynnika temperatury musi być ujemna. Jeśli nie masz arkusza danych modułu, możesz użyć -0,4 jako wartości domyślnej.

6. Kliknij **Zapisz**.

Ustawienia czujnika zostały skonfigurowane.

7. W przypadku wielu orientacji, np. więcej niż jednej bramki, powtórz wszystkie kroki dla każdej z bramek, aby uwzględnić pomiary czujnika w obliczeniach PR.

Satelitarny PR jako źródło danych

W przypadku zamówienia satelitarnej usługi PR użyj jej do obliczenia wartości PR.

Aby edytować dane satelitarne:

1. Z listy rozwijanej Źródło danych wybierz Dane satelitarne.

Wyświetlą się informacje o danych satelitarnych:

- *w* Szczytowa wartość mocy prądu stałego w instalacji: pozyskana z danych instalacji
- Szczytowa wartość mocy modułów: moc wszystkich zainstalowanych modułów

UWAGA

Liczba ta posłuży do obliczenia PR i zostanie wyświetlona po edycji ustawień modułów. W przypadku instalacji o wielu orientacjach całkowita moc szczytowa jest sumą wszystkich mocy.

UWAGA

Suma wartości mocy szczytowej modułów powinna być równa wartości mocy szczytowej instalacji.

- 2. W polu **Data rozpoczęcia** wybierz datę początkową, od której będzie wyświetlany wskaźnik wydajności.
- 3. Z listy rozwijanej Typ instalacji wybierz typ instalacji:
- 📕 Wolnostojąca: konstrukcja z modułami na lądzie
- *—* Zintegrowana z budynkiem: moduły bezpośrednio zintegrowane z dachem lub elewacją
- *Montaż na dachu*: moduły montowane na dachach pod określonym nachyleniem

Tabela wyświetla szczegóły modułu, w tym liczbę modułów, optymalizatory mocy, azymut, nachylenie i moc wyjściową dla każdego typu modułu.

SolarEdge Site 🔍									
Site Details	~								
Site Access	~	Performance Ratio							
Logical Layout		Data Source Satellite data	~						
Remote Settings	~	Start Date (i) 03/07/2023	Ē						
Energy Manager		Installation Type (1)							
Revenue		Roof Mounted	~						
Performance	^	Module Details			Module	Optimizers	Azimuth	Tilt	Power (kWp)
Inverter kWh/kWp		CS Wismar GmbH, Excellent Glas Crystalline Silicon, 260W	s/Glass 260M48 brilliant	Ø	847	430	135	17	241.5
Estimated Energy		REC Solar AS, REC 245PE ECO Crystalline Silicon, 245W		Ø	500	250	315	37	142.5
Performance Ratio		Total			1,347	680			383
		Site Peak DC Power: 383 kWp DC Modules Peak Power: 383 kWp Cancel Save							

4. Aby edytować Szczegóły modułu, kliknij 🧳 .

Wyświetli się wyskakujące okienko Edytuj szczegóły modułu:

Manufacturer		Technology (i)		
CS Wismar GmbH		Crystalline Silico	on 🗸	
Model Name		Temperature Coeffic	cient (i)	
Excellent Glass/Glass 260	0M48 brilliant	-0.39		%
Maximum Power				
260	W			

5. W polach opcji wpisz informacje, które chcesz edytować, i kliknij Aktualizuj.

6. Kliknij Zapisz.

Wykres wskaźnika wydajności zostanie udostępniony na pulpicie Twojej instalacji w ciągu jednego dnia roboczego.

UWAGA

Aby skorzystać z funkcji satelitarnego PR, sprawdź, czy instalacja ma opublikowany układ graficzny:

- 1. Aby edytować układ graficzny, wybierz zakładkę Układ i kliknij 🧖
- 2. Jeśli układ graficzny nie istnieje, kliknij <u>Nota aplikacyjna Korzystanie z Edytora układu</u> <u>instalacji w Platformie Monitoringu</u>.

solar<mark>edge</mark>

Wyświetl PR

Aby wyświetlić PR swojej instalacji na liście instalacji:

- 1. Na liście instalacji kliknij
- Zaznacz jedno lub więcej pól wyboru Wskaźnik wydajności.
 Kolumny wskaźnika wydajności zostaną automatycznie wyświetlone na liście instalacji.

Aby wyświetlić PR na pulpicie instalacji:

1. Kliknij nazwę instalacji.

Zostanie wyświetlony pulpit **instalacji**. Wartość PR zostanie automatycznie wyświetlona na miniaturowym pulpicie.

2. Wybierz okres czasu, który chcesz wyświetlić.

Domyślnie pulpit wyświetla informacje na bieżący dzień i automatycznie aktualizuje je po zmianie godziny.

Załącznik A: Obliczanie PR

Stosunek energii rzeczywistej do oczekiwanej podawany jest w procentach i obliczany za pomocą następujących wzorów:

📨 W przypadku systemu fotowoltaicznego z jedną orientacją:

 $PR = \frac{Ilość wytwarzanej}{\substack{ehergii\\energii}} = \frac{Ilość wytwarzanej energii [Wh]}{\sum_{t} \left[\begin{array}{c} Natężenie\\promieniowania \left[\frac{Wh}{m^2} \right] \times \frac{Szczytowa wartość mocy [W]}{1000 W/M^2} \right]}$

- Ilość wytwarzanej energii wskazuje wartość produkcji instalacji w kWh
- Oczekiwaną ilość energii oblicza się, mnożąc odczyty czujnika przez moc szczytową (nominalna moc wyjściowa instalacji w STC)

W przypadku systemu fotowoltaicznego o wielu orientacjach można podłączyć czujnik natężenia promieniowania i CCG na każdej płaszczyźnie. W takim przypadku PR oblicza się w następujący sposób:

Jeżeli w celu poprawy dokładności obliczeń PR zastosowano modułowy czujnik temperatury, PR oblicza się w następujący sposób:

- Temperatura to wartość zmierzona przez czujnik temperatury modułu, w °C
- Współczynnik temperatury to współczynnik temperatury modułu (Pmpp), pobrany z arkusza danych modułu. Zawsze ma wartość ujemną w %P/°C (lub %P/°K)

Załącznik B: Sprawdzanie i aktualizacja zgodności oprogramowania

Aby móc korzystać z czujników, należy posiadać CCG z oprogramowaniem sprzętowym w wersji 2.07XX lub nowszej.

Aby sprawdzić wersję procesora:

Naciskaj przycisk Enter na ekranie, aż wyświetli się następujący ekran:

```
ID: ##########
DSP1/2:x.xxxx/x.xxxx
CPU :0002.0700
Country:XXXXX
```


UWAGA

Urządzenia SolarEdge z wcześniejszymi wersjami oprogramowania sprzętowego można aktualizować. Skontaktuj się ze <u>Wsparciem SolarEdge</u>, aby uzyskać pliki aktualizacyjne i instrukcje.