Výpočet výkonového poměru a aktivace v Monitorovací platformě – Poznámky k aplikaci

Historie verzí

- 🛲 Verze 3.0, prosinec 2023: Aktualizace textu a obrázků
- 📨 Verze 2.1, duben 2018: Oprava vzorců
- 🛲 Verze 2.0, prosinec 2017: Přidání satelitní služby pro výpočty % VP

Obsah

1
3
3
5
7
7
9

Přehled

Tyto poznámky k aplikaci popisují, jak upravit nastavení v Monitorovací platformě SolarEdge, aby se zobrazovala hodnota výkonového poměru (VP). VP je klíčový údaj používaný k posouzení účinnosti a celkového výkonu solárního fotovoltaického (FV) systému. Udává, jak efektivní je systém při přeměně slunečního světla na elektřinu. Vyjadřuje se v procentech a vypočítává se porovnáním skutečného energetického výstupu FV systému s teoretickým energetickým výstupem generovaným za ideálních podmínek.

Následující tabulka obsahuje pojmy potřebné k vysvětlení výpočtu hodnoty VP:

Slovníček pojmů	Popis
Energie na výstupu	Skutečné množství elektřiny vyrobené solárním FV systémem měřené v kilowatthodinách (kWh).
Špičkový výkon	Maximální jmenovitý výkon solárního FV systému za standardních zkušebních podmínek měřený v kilowattech (kW).
Sluneční záření	Množství sluneční energie dopadající na povrch solárních panelů na jednotku plochy měřené v kilowattech na metr čtvereční (kW/m ²).

Hodnota VP představuje ztrátu způsobenou neefektivitou systému např. vlivem teplotních výkyvů, zastínění, nahromadění prachu, nečistot atd.

Měření **Popis** Měření zajišťuje elektroměr, který sleduje, kolik elektřiny vyrobí Energie na výstupu solární FV systém. Chytré měniče SolarEdge poskytují údaje o energii na výstupu. Špičkový výkon solárního FV systému udává výrobce. Údaj je Špičkový výkon uveden v technickém listu nebo na typovém štítku solárních panelů. Údaje o slunečním záření lze získat z místních meteorologických Sluneční záření stanic, senzorů a solárních monitorovacích systémů. Data lze také získat online od poskytovatelů satelitních údajů o počasí, kteří nabízejí aktuální a historická data a dokážou předpovídat množství slunečního záření dopadajícího na vaši lokalitu. Vyšší VP znamená vyšší výkon a účinnost solárního FV systému. Výklad výpočtů Hodnota VP blízko 100 % znamená, že systém funguje efektivně, zatímco nižší VP znamená ztrátu účinnosti v důsledku různých faktorů.

Následující tabulka popisuje měření potřebná pro výpočet hodnoty VP:

Je nutné počítat s tím, že hodnota VP je dynamická metrika a může se měnit vlivem prostředí, údržby nebo upgradů systému. Pravidelné monitorování a výpočet hodnoty VP pomáhá identifikovat problémy s výkonem a zaměřit údržbu na optimalizaci účinnosti solárního FV systému.

Satelitní služba, která provádí výpočty VP na základě údajů o záření zjištěných satelity, je dostupná pouze v některých oblastech a lze ji zakoupit bez ohledu na to, zda jsou na místě instalovány senzory, či nikoli.

POZNÁMKA

SolarEdge satelitní služby už neposkytuje.

•••

POZNÁMKA

Podrobnosti k připojení senzorů ke komerční bráně (CCG) a konfiguraci systému viz <u>Průvodce</u> instalací ovládací a komunikační brány SolarEdge.

Nastavte zobrazení VP v Monitorovací platformě

Pokud chcete nastavit výpočty VP v Monitorovací platformě:

- 1. Přihlaste se do Monitorovací platformy.
- 2. Přejděte na instalaci klepnutím na Název instalace.
- 3. Klepněte na zobrazení Administrátora.
- 4. V nabídce Administrátora klepněte na Výkon.

••• POZNÁMKA

Pokud je nainstalován senzor nebo byly zakoupeny satelitní výpočty VP, zobrazí se Výkonový poměr.

5. Vyberte Výkonový poměr.

Senzory jako zdroj dat

Pokud jsou senzory nainstalovány, připojeny k bráně CCG a nakonfigurovány, můžete jejich nastavení upravit v Monitorovací platformě tak, aby se hodnota VP zobrazovala v přehledu instalace. Aktivace senzorů vyžaduje verzi firmwaru CCG 2.07XX nebo novější. Informace o kompatibilitě a upgradu softwaru viz <u>Příloha B: Kontrola kompatibility a upgrade softwaru</u>.

Nastavení VP pomocí senzorů:

1. V rozbalovací nabídce Zdroj dat vyberte položku Senzory na instalaci.

Zobrazí se informace o senzorech na instalaci:

- **Přidružený špičkový výkon**: uvádí výkon pole, kde jsou instalovány senzory

••• POZNÁMKA

Údaj se použije k výpočtu hodnoty VP a zobrazí se po úpravě nastavení senzoru. U instalací s různou orientací je přidružený špičkový výkon součtem výkonu všech polí s instalovanými senzory.

Mázev brány (CCG) a informace o senzoru

2. Pokud chcete povolit výpočty VP na základě hodnot naměřených senzorem, označte pole **Brána**.

Zobrazí se nastavení senzoru, která lze upravit.

blarEdge Site 🔍				
Site Details	~			
Site Access	~	Performance Ratio		
Logical Layout		Data Source	~	
Remote Settings	~			
Energy Manager		Site Peak Power: 443.8 kWp Associated Peak Power: 421.8 kWp		
Revenue		✓ Gateway 1		
Performance		Irradiance Sensor Direct irradiance		
Inverter kWh/kWp		Associated Peak Power (i)		
Estimated Energy		421.8 kWp	~	
Performance Ratio		-0.4	%	

- 3. V poli Senzor osvitu ověřte, že konfigurace senzoru osvitu je stejná jako v bráně.
- 4. Do pole **Přidružený špičkový výkon** zadejte hodnotu přidruženého špičkového výkonu a vyberte jednotku (Wp, kWp nebo MWp).

Hodnota se následně zobrazí v poli Přidružený špičkový výkon.

••• POZNÁMKA

Součet souvisejících hodnot přidruženého špičkového výkonu bran by se měl rovnat hodnotě špičkového výkonu příslušné instalace.

5. Pokud je instalace vybavena senzorem teploty panelů a výpočet VP má zohledňovat hodnoty naměřené tímto senzorem, zadejte do pole Koeficient teploty teplotní koeficient výkonu panelu (% P / °C).

POZNÁMKA

Hodnota koeficientu teploty musí být záporná. Pokud nemáte technický list panelu, můžete jako výchozí číslo použít -0,4.

- Klepněte na Uložit. Váš senzor je nakonfigurován.
- 7. Pokud chcete zahrnout měření senzoru do výpočtů VP u instalace s různými orientacemi, např. při použití více než jedné brány, proveď te všechny kroky u každé z bran.

solar<mark>edge</mark>

Satelitní VP jako zdroj dat

Pokud jste si zakoupili satelitní službu VP, použijte ji k výpočtu VP.

Pokud chcete satelitní data upravit:

- V rozbalovací nabídce Zdroj dat vyberte Satelitní data.
 Zobrazí se informace o satelitních datech:
- **Špičkový výkon panelů**: výkon všech nainstalovaných panelů

$\overline{\cdots}$

••• POZNÁMKA

Na této hodnotě bude založen výpočet VP, který se zobrazí po změně nastavení modulu. U instalací s různými orientacemi je celkový špičkový výkon součtem všech hodnot výkonu.

···

POZNÁMKA

Součet hodnot špičkového výkonu panelů by měl být rovný hodnotě špičkového výkonu příslušné instalace.

- 2. V poli Počáteční datum vyberte datum, od kterého se má zobrazovat výkonový poměr.
- 3. V rozbalovací nabídce Typ instalace vyberte typ instalace:
- Volně stojící: pozemní konstrukce s panely
- *Integrovaná do budovy*: panely zabudované do střechy nebo fasády
- **w** Střešní: panely namontované na střechách pod určitými úhly

Tabulka uvádí podrobnosti o panelech včetně počtu panelů, výkonových optimizérů, azimutu, sklonu a výstupního výkonu jednotlivých typů panelů.

SolarEdge Site 🔍								
Site Details	~							
Site Access	~	Performance Ratio						
Logical Layout		Data Source Satellite data 🗸						
Remote Settings	~	Start Date ① 03/07/2023						
Energy Manager		Installation Type (1)						
Revenue		Roof Mounted 🗸						
Performance	^	Module Details		Module	Optimizers	Azimuth	Tilt	Power (kWp)
Inverter kWh/kWp		CS Wismar GmbH, Excellent Glass/Glass 260M48 l Crystalline Silicon, 260W	brilliant 🖉	847	430	135	17	241.5
Estimated Energy		REC Solar AS, REC 245PE ECO Crystalline Silicon, 245W	Ø	500	250	315	37	142.5
Performance Ratio		Total		1,347	680			383
		Site Peak DC Power: 383 kWp DC Modules Peak Power: 383 kWp Cancel						

Pokud chcete upravit Podrobnosti o panelu, klepněte na
 Otevře se vyskakovací okno Upravit podrobnosti o panelu:

Manufacturer	Technology (i)	
CS Wismar GmbH	Crystalline Silicon 🗸	
Model Name	Temperature Coefficient (i)	
Excellent Glass/Glass 260M48 brilliant	-0.39	%
Maximum Power		
260 w		

5. Do možností pole zadejte údaje, které chcete upravit, a klepněte na Aktualizovat.

6. Klepněte na **Uložit**.

Graf výkonového poměru bude do jednoho pracovního dne k dispozici v přehledu instalace.

POZNÁMKA

Pokud chcete použít funkci satelitního stanovení VP, zkontrolujte, jestli má instalace zveřejněné fyzické rozvržení:

- 1. Pokud chcete upravit fyzické rozvržení, vyberte záložku Rozvržení a klepněte na 🖉
- 2. Pokud fyzické rozvržení neexistuje, klepněte na <u>Použití Editoru rozvržení instalace v</u> poznámkách k aplikaci k Monitorovací platformě.

Zobrazení VP

Pokud chcete zobrazit VP instalace v seznamu instalací:

- 1. V seznamu instalací klepněte na 🍄
- Označte jedno nebo více zaškrtávacích polí Výkonový poměr.
 V seznamu instalací se automaticky zobrazí sloupec Výkonový poměr.

Pokud chcete zobrazit VP v přehledu instalace:

1. Klepněte na Název instalace.

Zobrazí se přehled instalace. Hodnota VP se automaticky zobrazí v minipřehledu.

2. Vyberte období, které chcete zobrazit.

Ve výchozím nastavení zobrazuje přehled údaje za aktuální den a po úpravě období se automaticky aktualizuje.

Příloha A: Výpočet VP

Poměr mezi skutečnou a očekávanou energií se udává v procentech a počítá se pomocí následujících vzorců:

Pro FV systém se stejnou orientací:

$$PR = \frac{Vyrobená energie}{Očekávaná energie} = \frac{Vyrobená energie [Wh]}{\sum_{t} \left[\begin{array}{c} Záření & [\frac{Wh}{m^2}] \times \frac{\dot{Spičkový výkon [W]}}{1000 W/m^2} \end{array} \right]}$$

- Výroba energie je výsledek měření výkonu instalace v kWh
- Očekávaná energie je součin hodnot naměřených senzorem a špičkového výkonu (jmenovitého výkonu instalace za STC)
- U FV systému s různými orientacemi lze na každou fasetu připojit senzor osvitu a CCG. V tomto případě je výpočet VP následující:

Pokud ke zpřesnění výpočtu VP použijete teplotní senzor panelu, vypočítá se VP následovně:

<i>PR</i> = -	Vyrobená energie	lyrobená energie					
	Očekávaná energie	$-\Sigma_t$	Záření	$\left[\frac{Wh}{m^2}\right] \times \frac{\text{Spickery' tylken}[W]}{1000 W/m^2} \times \left[1 + (\text{Tepl. [°C]} - 25^{\circ}C) \times \text{Tepl. keeficient } \left[\frac{9}{\pi}\right]$	<u>%</u>]]		

- Tepl. je hodnota naměřená teplotním senzorem modulu ve °C
- Koeficient tepl. je teplotní Pmpp koeficient panelu převzatý z jeho technického listu, je vždy záporný a uvádí se v % P / °C (nebo % P / °K)

Příloha B: Kontrola kompatibility a upgrade softwaru

Použití senzorů vyžaduje verzi firmwaru CCG 2.07XX a novější.

Pokud chcete zkontrolovat verzi CPU:

Podržte tlačítko Enter na obrazovce, dokud se neotevře následující obrazovka:

••• POZNÁMKA

Zařízení SolarEdge se staršími verzemi firmwaru lze upgradovat. Obraťte se na <u>podporu</u> <u>SolarEdge</u>, která vám poskytne soubory a pokyny k upgradu.