Nota aplikacyjna – sterowanie przekaźnikami AC falownika za pomocą dodatkowego urządzenia zabezpieczającego

Historia wersji

- Wersja 1.6, luty 2023 r.
 - Aktualizacja rysunków nr 4 i 6.
 - Zmiany redakcyjne
- Wersja 1.5, wrzesień 2020 r.
 - Dodano konfigurację sterowania przekaźnikami AC za pomocą SetApp.
 - Zmiany redakcyjne
- Wersja 1.4, marzec 2019 r. zmieniono rysunki nr 4 i 6 (zastąpiono dodatkowe urządzenie zabezpieczające urządzeniem do monitorowania sieci oraz usunięto K1, K2 i K3)
- Wersja 1.3, wrzesień 2018 r. dodano brakujące uziemienie z falownika do bramy komercyjnej na rysunku 5 i zmieniono CCG na bramę komercyjną.
- Wersja 1.2 czerwiec 2018 r. dodano brakujący rysunek
- Wersja 1.1, styczeń 2018 r. zaktualizowano czas reakcji podczas stosowania wersji 3.22xx Wersja 1, lipiec 2016 r. wersja początkowa

Wprowadzenie

W niektórych przypadkach instalacje fotowoltaiczne wymagają dodatkowej ochrony sieci niezależnie od wewnętrznych zabezpieczeń sieci falownika (przykład dodatkowego zabezpieczenia sieci został zdefiniowany w normie VDE-AR- N-4105). Taką dodatkową ochronę sieci może zapewniać urządzenie sterujące dwoma stycznikami połączonymi szeregowo z siecią i falownikiem. Urządzenie stale monitoruje parametry sieci, takie jak wartość napięcia i częstotliwości, oraz automatycznie rozłącza system z sieci w przypadku wykrycia odchyleń od dopuszczalnego zakresu danego parametru poprzez otwarcie styczników. Gdy parametry powrócą do dopuszczalnego zakresu i pozostaną w nim przez wymagany czas, urządzenie ponownie przyłącza system do sieci poprzez zamknięcie styczników.

Rysunek 1: Dodatkowe urządzenie zabezpieczające

Zamiast styczników zewnętrznych można również wykorzystać wewnętrzne przekaźniki falownika. Takie rozwiązanie pozwala zaoszczędzić koszty zewnętrznych styczników, które zwykle wynoszą od 100 do 1000 EUR, w zależności od rozmiarów instalacji.

Załącznik – funkcja sterowania przekaźnikami AC w przypadku RRCR z trzema przekaźnikami 2

W niniejszej nocie aplikacyjnej opisano sposób podłączenia takiego urządzenia do falownika SolarEdge oraz sposoby konfiguracji sterowania przekaźnikami. Aby użyć funkcji sterowania przekaźnikami AC, oprogramowanie sprzętowe (CPU) karty komunikacyjnej falownika musi być w wersji 3.18xx lub wyższej; czas reakcji przekaźnika AC wynosi około 1 sek. Aby uzyskać czas reakcji ≤100 ms, należy użyć oprogramowania sprzętowego w wersji 3.22xx lub wyższej.

Aby uzyskać więcej informacji na temat regulacji mocy falowników SolarEdge, prosimy

zapoznać się z dokumentami:

- Nota aplikacyjna dotycząca regulacji redukcji mocy.
- Nota aplikacyjna opcje regulacji mocy

Podłączanie dodatkowego urządzenia zabezpieczającego do falownika SolarEdge

Aby sterować przekaźnikami falownika, dodatkowe urządzenie zabezpieczające podłącza się do złącza interfejsu redukcji mocy (PRI) falownika, które znajduje się na jego karcie komunikacyjnej. W instalacji wyposażonej w bramę komercyjną urządzenie należy podłączyć do złącza PRI bramy, tak jak to przedstawiono na rysunku nr 5: System z wieloma falownikami, RRCR i bramą komercyjną.

Tylko jeden z czterech sygnałów PRI (L1) jest wykorzystywany do sterowania wewnętrznymi przekaźnikami falownika.

UWAGI

- Do jednego dodatkowego urządzenia zabezpieczającego można podłączyć maksymalnie 15 falowników. W
 przypadku instalacji obejmujących więcej niż 15 falowników należy zastosować kilka urządzeń.
- Łączna długość całego okablowania falowników nie może przekraczać 200 m. Łączna długość okablowania obejmuje:
 - Kable połączeniowe między falownikami.
 - Kable poprowadzone z falownika do dodatkowego urządzenia zabezpieczającego.
 - Kable poprowadzone z dodatkowego urządzenia zabezpieczającego do falownika.
 - Kable pomiędzy zaciskami "G".
- Użyj kabla CAT6 do połączenia falowników z dodatkowym urządzeniem zabezpieczającym oraz do wykonania wzajemnych połączeń pomiędzy poszczególnymi falownikami.

Dodatkowe urządzenie zabezpieczające powinno pracować w trybie normalnie zamkniętym (NC). W obwodzie normalnie zamkniętym energia płynie do czasu aktywacji przekaźnika, który rozłącza obwód i przerywa dopływ energii; obwód jest połączony i dopływ energii zostaje przywrócony wraz z dezaktywacją przekaźnika.

UWAGA!

Przekaźniki zwykle mają niski stopień ochrony IP i wymagają umieszczenia w obudowie.

Rysunek 2: tryby NC przekaźników

UWAGA

Jeżeli wymagana jest regulacja mocy RRCR, nie należy zastępować domyślnej konfiguracji RRCR wykorzystywanej przez dostawców energii do redukcji mocy (L4/L3/L2/L1: 0001 \rightarrow 0%, 0010 \rightarrow 30%, 0100 \rightarrow 60% i 1000 \rightarrow 100%).

Załącznik – funkcja sterowania przekaźnikami AC w przypadku RRCR z trzema przekaźnikami 3

System z wieloma falownikami bez RRCR

Procedura połączenia:

- 1. Połącz dwa przewody dodatkowego urządzenia zabezpieczającego ze stykami 5 V i L1 PRI dowolnego falownika (nie musi to być falownik nadrzędny wykorzystywany do celów komunikacyjnych).
- 2. Poprowadź przewody od styku L1 jednego falownika do styku L1 kolejnego falownika i tak dalej.
- 3. Poprowadź przewody od styku G jednego falownika do styku G kolejnego falownika i tak dalej.

Zachowanie systemu:

- Gdy L1=1, przekaźniki falownika są zamknięte
- Gdy L1=0, przekaźniki falownika zostają automatycznie otwarte. Pozostają otwarte do czasu aż L1=1.

Rysunek 3: System z wieloma falownikami, brak RRCR

Załącznik – funkcja sterowania przekaźnikami AC w przypadku RRCR z trzema przekaźnikami 4

System z wieloma falownikami i RRCR

Procedura połączenia:

- 1. Poprowadź przewód od dodatkowego urządzenia zabezpieczającego do styku 5 V falownika, do którego podłączone jest RRCR.
- 2. Poprowadź przewód od dodatkowego urządzenia zabezpieczającego do RRCR.
- 3. Poprowadź przewody od styku L1 tego falownika do styku L1 kolejnego falownika i tak dalej.

••• UWAGA

RRCR należy podłączyć do falownika nadrzędnego wykorzystywanego do celów komunikacyjnych.

4. Poprowadź przewody od styku G jednego falownika do styku G kolejnego falownika i tak dalej.

Zachowanie systemu:

- Falownik nadrzędny:
- Gdy L1 = L2 = L3 = L4 = 0, przekaźniki falownika zostają automatycznie otwarte.
- W przypadku dowolnej innej kombinacji sygnałów falownik zachowuje się zgodnie z konfiguracją RRCR. Falowniki podrzędne:
- Gdy L1=1, przekaźniki falownika są zamknięte. Wszelkie sygnały RRCR zostaną odebrane przez falownik nadrzędny za pomocą RS485.
- Gdy L1=0, przekaźniki falownika zostają automatycznie otwarte. Pozostają otwarte do czasu aż L1=1.

Rysunek 4: System z wieloma falownikami i RRCR

System z wieloma falownikami, RRCR i bramą komercyjną

Procedura połączenia:

- 1. Poprowadź jeden przewód od dodatkowego urządzenia zabezpieczającego do styku 5 V PRI bramy komercyjnej.
- 2. Poprowadź jeden przewód od dodatkowego urządzenia zabezpieczającego do styku L1 falownika podłączonego do bramy komercyjnej.
- 3. Poprowadź przewody od styku L1 tego falownika do styku L1 kolejnego falownika i tak dalej.
- 4. Poprowadź przewody od styku G jednego falownika do styku G kolejnego falownika i tak dalej.

UWAGA

RRCR łączy się z bramą komercyjną, a nie bezpośrednio z falownikiem. Dodatkowe urządzenie zabezpieczające jest połączone zarówno z bramą komercyjną, jak i falownikiem, do którego podłączona jest brama komercyjna.

Zachowanie systemu:

Jeżeli L1=1, przekaźniki falownika pozostają zamknięte. Wszelkie zadane sygnały z RRCR zostaną odebrane z bramy komercyjnej za pomocą RS485. Jeżeli L1=0, przekaźniki falownika zostaną automatycznie otwarte. Pozostaną otwarte do czasu aż L1=1.

Rysunek 5: System z wieloma falownikami, RRCR i bramą komercyjną

Konfiguracja sterowania przekaźnikami AC

Wymagania konfiguracyjne

- Aby użyć funkcji sterowania przekaźnikami AC w falownikach za pomocą SetApp, oprogramowanie sprzętowe (CPU) karty komunikacyjnej falownika musi być w wersji 4.2xx lub wyższej.
- Aby użyć funkcji sterowania przekaźnikami AC w falownikach z ekranem LCD i przyciskami, oprogramowanie sprzętowe (CPU) karty komunikacyjnej falownika musi być w wersji 3.18xx lub wyższej. W celu uzyskania pliku aktualizacji oraz instrukcji prosimy o kontakt z działem wsparcia SolarEdge.
- Gdy funkcja sterowania przekaźnikami AC jest włączona, wszystkie falowniki w systemie muszą być skonfigurowane w trybie sterowania przekaźnikami AC.
- Jeżeli zainstalowano bramę komercyjną, nie powinna być ona skonfigurowana w trybie sterowania przekaźnikami AC.

•	•	•	
-	1		

UWAGA

Sterowanie przekaźnikami AC jest domyślnie wyłączone i należy je włączyć w menu falowników.

Włączanie sterowania przekaźnikami AC w falownikach z konfiguracją SetApp

- 1. Otwórz aplikację SetApp.
- 2. Wybierz Przekazanie do eksploatacji > Komunikacja w obiekcie > GPIO > Typ urządzenia > Interfejs redukcji mocy (RRCR).
- 3. Wybierz GPIO > Tryb interfejsu redukcji mocy (RRCR) > [Wybierz odpowiedni tryb].

Włączanie sterowania przekaźnikami AC w falownikach z ekranem LCD i przyciskami

System z RRCR

- 1. Wybierz Komunikacja → Serwer <LAN>
- 2. Wybierz Serwer <LAN>→LAN
- 3. Wybierz Konf. GPIO.

4. Wybierz Typ urządzenia → < STEROWANIE PRZEKAŹNIKAMI AC + RRCR>.

```
> Urządzenie Typ <AC+R>
```

System bez RRCR

- 1. Wybierz Komunikacja → Serwer <LAN>
- 2. Wybierz Serwer <LAN>→LAN
- 3. Wybierz Konf. GPIO.
- 4. Wybierz Typ urządzenia → STEROWANIE PRZEKAŹNIKAMI AC

>Urządzenie Typ <AC>

Wyłączanie sterowania przekaźnikami AC

- 1. Wybierz Komunikacja → Serwer <LAN>
- 2. Wybierz Serwer <LAN>→LAN
- 3. Wybierz Konf. GPIO.
- 4. Wybierz Typ urządzenia → RRCR

Załącznik – funkcja sterowania przekaźnikami AC w przypadku RRCR z trzema przekaźnikami

Jeżeli instalacja posiada RRCR z trzema przekaźnikami, aby użyć funkcji sterowania przekaźnikami AC, należy podłączyć system w następujący sposób:

Rysunek 6: funkcja sterowania przekaźnikami AC w

przypadku RRCR z trzema przekaźnikami Ustawienia RRCR należy skonfigurować w

następujący sposób:

Moc czynna	L1	L2	L3	L4
0%	1	1	0	0
30%	1	0	1	0
60%	1	0	0	1
100%	1	0	0	0
Przekaźniki otwarte	0	0	0	0